Poincaré duality and periodicity

نویسندگان

  • JOHN R KLEIN
  • WILLIAM RICHTER
  • John R Klein
  • William Richter
چکیده

We construct periodic families of Poincaré spaces. This gives a partial solution to a question posed by Hodgson in the proceedings of the 1982 Northwestern homotopy theory conference. In producing these families, we formulate a recognition principle for Poincaré duality in the case of finite complexes having one top cell that splits of after a single suspension. We also explain how a Z-equivariant version of our constructions yield a new description of the four-fold periodicity appearing in high dimensional knot cobordism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Duality between Κ-poincaré Algebra and Κ-poincaré Group

The full duality between the κ-Poincaré algebra and κ-Poincaré group is proved.

متن کامل

Twisted K-theory and Poincaré Duality

Using methods of KK-theory, we generalize Poincaré K-duality to the framework of twisted K-theory.

متن کامل

Poincaré/koszul Duality

We prove a duality for factorization homology which generalizes both usual Poincaré duality for manifolds and Koszul duality for En-algebras. The duality has application to the Hochschild homology of associative algebras and enveloping algebras of Lie algebras. We interpret our result at the level of topological quantum field theory.

متن کامل

Poincaré Duality Embeddings and Fiberwise Homotopy Theory

We prove an embedding theorem for maps from a finite complex into a Poincaré duality space. The proof uses fiberwise homotopy theory.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008